Cyclic Cohomology of Étale Groupoids; The General Case

نویسنده

  • Marius Crainic
چکیده

We give a general method for computing the cyclic cohomology of crossed products by étale groupoids, extending the Feigin-Tsygan-Nistor spectral sequences. In particular we extend the computations performed by Connes, Brylinski, Burghelea and Nistor for the convolution algebra C∞ c (G) of an étale groupoid, removing the Hausdorffness condition and including the computation of hyperbolic components. Examples like group actions on manifolds and foliations are considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Algebraic Index for Riemannian Étale Groupoids

In this paper, we construct an explicit quasi-isomorphism to study the cyclic cohomology of a deformation quantization over a Riemannian étale groupoid. Such a quasi-isomorphism allows us to propose a general algebraic index problem for Riemannian étale groupoids. We discuss solutions to that index problem when the groupoid is proper or defined by a constant Dirac structure on a 3-dimensional t...

متن کامل

Homology of Formal Deformations of Proper Étale Lie Groupoids

In this article, the cyclic homology theory of formal deformation quantizations of the convolution algebra associated to a proper étale Lie groupoid is studied. We compute the Hochschild cohomology of the convolution algebra and express it in terms of alternating multi-vector fields on the associated inertia groupoid. We introduce a noncommutative Poisson homology whose computation enables us t...

متن کامل

Local index theory over étale groupoids

We give a superconnection proof of Connes’ index theorem for proper cocompact actions of étale groupoids. This includes Connes’ general foliation index theorem for foliations with Hausdor¤ holonomy groupoid.

متن کامل

Foliation groupoids and their cyclic homology

The purpose of this paper is to prove two theorems which concern the position of étale groupoids among general smooth (or ”Lie”) groupoids. Our motivation comes from the non-commutative geometry and algebraic topology concerning leaf spaces of foliations. Here, one is concerned with invariants of the holonomy groupoid of a foliation [4, 34], such as the cohomology of its classifying space [14],...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997